Uncovering hidden variation in polyploid wheat.

نویسندگان

  • Ksenia V Krasileva
  • Hans A Vasquez-Gross
  • Tyson Howell
  • Paul Bailey
  • Francine Paraiso
  • Leah Clissold
  • James Simmonds
  • Ricardo H Ramirez-Gonzalez
  • Xiaodong Wang
  • Philippa Borrill
  • Christine Fosker
  • Sarah Ayling
  • Andrew L Phillips
  • Cristobal Uauy
  • Jorge Dubcovsky
چکیده

Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexa...

متن کامل

Sequence-Based Mapping of the Polyploid Wheat Genome

The emergence of new sequencing technologies has provided fast and cost-efficient strategies for high-resolution mapping of complex genomes. Although these approaches hold great promise to accelerate genome analysis, their application in studying genetic variation in wheat has been hindered by the complexity of its polyploid genome. Here, we applied the next-generation sequencing of a wheat dou...

متن کامل

Genetic and molecular characterization of the VRN2 loci in tetraploid wheat.

Winter wheat (Triticum spp.) varieties require long exposures to low temperatures to flower, a process called vernalization. The VRN2 locus includes two completely linked zinc finger-CCT domain genes (ZCCT1 and ZCCT2) that act as flowering repressors down-regulated during vernalization. Deletions or mutations in these two genes result in the elimination of the vernalization requirement in diplo...

متن کامل

Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes.

To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and gr...

متن کامل

Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat.

Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 6  شماره 

صفحات  -

تاریخ انتشار 2017